
Math Modeling, Week 3 

1. Change the initial prior in the naive Bernoulli estimator. For example, set it to zero for all p < .5 (and remember to 
normalize). What do you think will happen? Run the model and see, then explain. 
 
We can set the prior to a uniform distribution on [.5,1] like this: 
d(p>1/2,1) = 1/sum(p>1/2); all other values of d(:,1) were previously set to zero 

This command leaves all other values of d (for p ≤ ½) at zero. If the prior for a particular hypothesis is zero, the posterior 
will be zero no matter what data are observed. Therefore the posteriors we see should look like the beta distributions we 
saw using the uniform [0,1] prior, except that the left half will be zeroed out (and the right half will be renormalized). 

 
 

2. Extend the Bernoulli learner to ternary observations. (If you like cover stories: You’re training for a roshambo match 
and watching video of your opponent’s past matches to estimate his tendencies.) 
 
a) For binary observations, the latent parameter to be estimated is a single number, q ∈ [0,1]. How would you characterize 
the thing to be estimated for ternary observations? (Answer before moving on.) 
 
Answer given in next question: a vector Q = (q1, q2, q3), constrained to satisfy Σ(qi) = 1. The probability of rock is q1, 
paper q2, and scissors q3. Alternatively, you could track only two of the probabilities, e.g. (q1,q2), because the third is 
implicit as q3 = 1 – q1 – q2. Explicitly writing all three makes the following derivations easier. 
 
b) There are multiple good answers for part a, but let’s go with this: a vector Q = (q1, q2, q3), constrained to satisfy Σ(qi) = 
1. The probability of rock is q1, paper q2, and scissors q3. Assume a uniform prior for Q. What’s the posterior after a single 
observation of rock? What’s the posterior after observing k rocks, m papers, and n scissors? You can answer without the 
normalization (using ∝), or if you like integrals you can work out the normalization constant. 
 
p(Q|rock) ∝ p(Q)⋅p(rock|Q) ∝ q1 
p(Q|{k rocks, m papers, and n scissors}) ∝ p(Q)⋅p(k rocks, m papers, and n scissors|Q) ∝ q1

kq2
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n 

 
c) Based on part b, you should be able to tell what the conjugate prior is for a ternary random variable. Try to extend this 
to the conjugate prior for a general n-ary random variable. Write out the distribution (with or without normalization), and 
write out the update rule for how the distribution’s parameters change each time a new observation is made. 
 

The conjugate prior isp(Q)!q1
a1"1q2

a2"1q3
a3"1 . This generalizes to n-ary observables as p(Q)! qi

ai"1

i=1

n
# , where a is a 

vector of n positive numbers. (The -1 in the exponents is just part of how the Dirichlet distribution is conventionally 
parameterized.) Each time we make some observation d, the update rule is to increase the corresponding component of a 
by one: Δad = 1. Updating a in this way is equivalent to doing a Bayesian update on the full prior (p(Q|d) ∝ p(Q)p(d|Q)). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10



 
The answer to part c is called a Dirichlet distribution. Look it up in Wikipedia (a reliable resource for this sort of thing) 
and compare the expression there for the probability density (PDF) to your answer above. 
 
d) Download http://matt.colorado.edu/teaching/mathmodeling/plotDirichlet.m for making nice pictures of Dirichlet 
distributions in the ternary case. (I drew it as an equilateral triangle, with each vertex corresponding to one of the values of 
the ternary observable variable.) Try different values and make some observations. Try non-integer inputs, including 
values between 0 and 1. Syntax is plotDirichlet(a1,a2,a3). 
 
e) Write some code for a Bayesian learner observing a series of ternary data, using a Dirichlet conjugate prior. The 
structure should be something like this: 
 
Set prior, i.e. parameters a1,a2,a3 for Dirichlet 
Define true generating probabilities for the observable, i.e. q1,q2,q3 with Σq = 1 
Loop through trials 

Sample an observation according to the probabilities in q  [o(i)=find(rand<cumsum(q),1)] 
Update Dirichlet parameters for posterior 

Plot posterior 
 
%% Multinomial estimation with Dirchlet conjugate prior 
  
n = 100; %number of trials to simulate 
q = [.5 .3 .2]; %true parameter value 
a = zeros(n+1,3); %parameters of prior, across trials 
a(1,:) = [1 1 1]; %parameters of initial prior 
  
%run bayesian model 
o = zeros(n,1); 
for i=1:n 
    o(i) = find(rand<cumsum(q),1); %generate observation 
    a(i+1,:) = a(i,:); %copy prior from previous trial 
    a(i+1,o(i)) = a(i+1,o(i))+1; %increment Dirichlet parameter corresponding to value of 
current observation 
end 
  
%plot evolution of posterior 
for f=1:6 
    i=round(1+n*f/6); %trial to plot 
    plotDirichlet(a(i,1),a(i,2),a(i,3),2,3,f) 
end 
 


